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Reciprocal edges represent the lowest-order cycle possible to find in directed graphs without self-loops.
Representing also a measure of feedback between vertices, it is interesting to understand how reciprocal edges
influence other properties of complex networks. In this paper, we focus on the influence of reciprocal edges on
vertex degree distribution and degree correlations. We show that there is a fundamental difference between
properties observed on the static network compared to the properties of networks, which are obtained by simple
evolution mechanism driven by reciprocity. We also present a way to statistically infer the portion of reciprocal
edges, which can be explained as a consequence of feedback process on the static network. In the rest of the
paper, the influence of reciprocal edges on a model of growing network is also presented. It is shown that our
model of growing network nicely interpolates between Barabási-Albert �BA� model for undirected and the BA
model for directed networks.
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I. INTRODUCTION

Most of real networks as, for example, Internet �1�, www
�2�, or biological webs �3�, etc., show interesting topological
properties compared with simple models of random graphs.
Today, it is well known that most of the real networks exhibit
certain properties such as fat tail degree distributions or
small-world effect, etc �4,5�. Reading literature on different
types of networks, a reader will find a huge number of papers
describing different types of correlations in complex net-
works. Assortativity �6�, clustering coefficient �7�, reciproc-
ity �8�, k-cores �9�, rich-club coefficient �10�, triad signifi-
cance profile �11�, and many other measures related to
correlations are frequently reported. Although the identifica-
tion of these correlations and their reporting in various em-
pirical complex networks has significantly improved our un-
derstanding of the field, the question of interrelations of
correlation measures naturally emerges. Is it really surprising
to find, for example, both the strong rich-club behavior and
strong degree correlations in the network? The answer is—
clearly not. Today, it is a well-known fact that most of the
real networks are correlated. Nevertheless, there is still a
huge gap in our understanding of how exactly certain types
of correlation-related measures influence other correlation-
related measures. In this paper, we will try to bridge a part of
that gap relating the reciprocity measure to degree sequence
and to degree correlations.

The directed network represents an interesting subgroup
of real networks, which allow movement in just one direc-
tion. Reciprocity �8� of complex networks is a fraction of
directed edges, which have their counterparts showing in the
opposite direction compared to the total number of edges,
i.e., every bidirectional arrow in the directed graph is con-
sidered as composed of two reciprocal edges. It can be said
that it is in fact a measure of how much is directed network
similar to undirected one. Reciprocity was also shown as an
important feature for percolation on directed networks �12�.
In previous work, we have also shown that the reciprocity is
a very stable correlation measure of all the investigated mea-

sures in the case of Wikipedia networks ensemble �13�.
In the paper �14�, the influence of the broad class of de-

gree correlations on the reciprocity measure is described and
quantified. In this paper, our aim is exactly the opposite, i.e.,
to find a way to quantify the influence of reciprocal edges on
degree correlations and degree distributions of complex net-
works. More precisely, first we focus on random addition of
reciprocal edges in the underlying static network. This pro-
cess of transformation of unidirectional edges into the bidi-
rectional ones can be justified in many ways. First, it is the
simplest possible choice of creating reciprocal links in the
network, which already has some structure. Second, it is the
logical model of information return in the case of the infor-
mation networks such as an e-mail or a www network.

II. INFLUENCE OF RECIPROCITY ON DEGREE
CORRELATIONS IN STATIC NETWORKS

As a null hypothesis, it is reasonable to suppose that the
mutual functional relationships between vertices are distrib-
uted completely randomly over the whole network. In other
words that means that we suppose that the mutual functional
relationship does not depend in any way on the degrees of
vertices or any other measurable network quantity. We sup-
pose that reciprocal edges can form only between vertices
which are already connected. The question we address is the
following: how reciprocal edges formed in this way trans-
form the degree distribution and correlations between de-
grees in a given complex network? The model is defined
with the initial network as an input. On the starting network,
the unidirectional edges are transformed with probability p
into reciprocal ones and with probability 1− p are left un-
changed. After this process, the properties of the new net-
work are measured again. We show that using the inversion
of the transformation process we can infer the most probable
starting configuration of the network.

In the following, we distinguish between bidirectional
edge as a single edge, which is pointing in two directions
contrary to some other analyses in which reciprocal edges
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are represented as two unidirectional edges connecting two
vertices i and j in opposing directions �8,14�. Every vertex of
the network is described by three numbers: the first repre-
sents exclusive in degree of the vertex, the second represents
exclusive out degree of the vertex, and the third represents its
bidirectional degree. Exclusive in �or out� degree is the num-
ber of unidirectional in �or out� edges which are attached to a
given vertex. In the following, these degrees will be desig-
nated as k��ki ,ko ,kr�.

From the initial network, we can extract the following
information as initial conditions for the observed transforma-
tion process: L number of edges; N number of vertices; L→

number of strictly unidirectional edges; L↔ number of
strictly bidirectional edges; L�k→q� number of unidirec-
tional edges, which are pointing from the vertex of degrees k
to the vertex of degrees q; L�k↔q� number of bidirectional
edges, which are connecting the vertices of degrees k and
degrees q; and N�k� number of vertices with degrees k. In
the following text, the convention will be that if we observe
unidirectional edges with k are designated degrees of the
starting vertex while with q are designated the degrees of the
ending vertex.

With these properties, it is possible to represent ad-
equately maximally random graph, as well as graphs with
any given degree distribution and correlations between de-
grees of neighboring vertices. Information on correlations
between degrees of neighboring vertices existing in the net-
work is given by the frequency of edges, which connect dif-
ferent vertices,

P�k, → ,q� =
L�k → q�

L
,

P�k, ↔ ,q� =
L�k ↔ q�

L
. �1�

Probabilities P�k , → ,q� and P�k , ↔ ,q� are defined as
joint probabilities that the vertex of degrees k is pointing
to/is connected to the vertex of degrees q, with unidirectional
edge in the former and with the bidirectional edge in the
latter case. The proper summation of these joint probabilities
is

�
qi,o=0

qr=1

�

�
k�q

�

P�k, ↔ ,q� + �
ki,r=0

ko=1

�

�
qo,r=0

qi=1

�

P�k, → ,q� = 1, �2�

where k�q means that every degree of the vector with de-
grees k is greater or equal to the corresponding degree of the
vector with degrees q. The summations are different for the
bidirectional edges compared with unidirectional edges be-
cause P�k , ↔ ,q�=P�q , ↔ ,k�= L�k↔q�

L . Although the statis-
tics of degrees of neighboring vertices gives relevant infor-
mation on correlation structure of the given network and the
one-vertex statistics can, in principle, be easily calculated
from that information, from an analytical aspect we will
show that is much easier to explicitly calculate one-vertex
degree correlations described with

P�k� =
N�k�

N
, �3�

where P�k� represents the joint probability that the vertex
has degrees ki, ko i kr.

In the studied model, every unidirectional edge is trans-
formed in a bidirectional one with the probability p. The
equation which expresses a new joint probability that a ver-
tex of degrees k� is pointing to a vertex of degrees q� via
unidirectional edge is

P��k�, → ,q�� = �
C

T�k�, → ,q��k, → ,q�P�k, → ,q� ,

�4�

where T represents the transition probability for the given
process. A prime on the probabilities means that they are
calculated after the transformation process; while the ab-
sence of a prime means that the probabilities are calculated
from the given starting network. The summation is run over
the set C of unidirectional edges, which fulfill the following
conditions. �i� The number of neighbors S�j�=ki

�j�+ko
�j�+kr

�j� is
conserved for every vertex j because transformation process
does not create new edges between vertices which are not
neighbors already; �ii� before and after the transformation
process, the following relations hold: ki�

�j��ki
�j�, ko�

�j��ko
�j�,

and kr�
�j��kr

�j�. The transition probability T written in a more
detail is

T�k�, → ,q��k, → ,q�

= �1 − p�T�ki��ki�T�ko� − 1�ko − 1�T�qi� − 1�qi − 1�T�qo��qo� .

�5�

The first part of Eq. �5� is the probability that the unidi-
rectional edge stays unidirectional after the transformation
process. Other unidirectional edges attached to the vertices
can be changed with probability p or stay unidirectional with
probability 1− p. The fact that in this case only other edges
are monitored is represented in equation by subtracting one
edge from the out degree of the out vertex and the in degree
of the in vertex. Probabilities of the transition T�x� �x�, where
x represents any of the aforementioned degrees are binomial
probabilities, i.e.,

T�x��x� = � x

x�
	px−x��1 − p�x�. �6�

New joint probability distribution of degrees of the verti-
ces connected via the bidirectional edge P��k , ↔ ,q� is

P��k�, ↔ ,q�� = �
C

�T�k�, ↔ ,q��k, ↔ ,q�P�k, ↔ ,q�

+ T�k�, ↔ ,q��k, → ,q�P�k, → ,q��

+ �
C�

T�q�, ↔ ,k��k, → ,q�P�k, → ,q� .

�7�
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The set C is fulfilling all the conditions as in Eq. �4�, while
for the set C� the following relations hold. �i� The number of
neighbors S�j�=ki

�j�+ko
�j�+kr

�j� is conserved for every vertex j
because transformation process does not create new edges
between vertices, which are not neighbors already; �ii� before
and after the transformation process, the following relations
hold: qi�

�j��ki
�j�, qo�

�j��ko
�j�, and qr�

�j��kr
�j�. In this equation,

the probabilities of transition have the similar meaning as in
Eq. �5�,

T�k�, ↔ ,q��k, ↔ ,q� = T�ki��ki�T�ko��ko�T�qi��qi�T�qo��qo� ,

�8�

while

T�k�, ↔ ,q��k, → ,q�

= pT�ki��ki�T�ko��ko − 1�T�qi��qi − 1�T�qo��qo� , �9�

and

T�q�, ↔ ,k��k, → ,q�

= pT�ko��qo�T�ki��qi − 1�T�qo��ko − 1�T�qi��ki� . �10�

It is important to notice that in Eq. �8� we do not need to
worry about the edge which connects neighboring vertices
because it is a process invariant bidirectional edge. Param-
eter p in Eqs. �9� and �10� represents the probability of the
transformation of unidirectional edge, which connects neigh-
bors to bidirectional edge. Individual probabilities of transi-
tion in Eqs. �8�–�10� are again binomial �6�.

Similar equations are easy to write for the transformation
process of one-vertex statistics. More precisely, equation

P��k�� = �
C
�ki

ki�
	�ko

ko�
	pki−ki�+ko−ko��1 − p�ki�+ko�P�k� �11�

describes their probability of transformation of joint prob-
ability of one-vertex degrees described with P�k� into the
joint probability of one-vertex degrees P��k��.

In all the aforementioned equations for the transformation
process, we used the joint probability statistics because the
total number of edges over which this statistics is obtained
does not change with the process. However, to calculate the
correlations existing in the network it is convenient to use
the conditional probabilities with respect to the type of the
edge which connects two neighboring vertices. The usual
equation for conditional probability can be employed as

P��k�,q��→� = P��k�, → ,q��/P�� → � . �12�

The probability that two neighboring vertices are connected
with unidirectional edge is P��→ �= P�→ ��1− p� and the
probability that a unidirectional edge exists before the trans-
formation process is P�→ �=L→ /L, where L→ is the number
of unidirectional edges before the transformation process.
Similar equation holds for the conditional probability that
two vertices are connected via bidirectional edge,

P��k�,q��↔� = P��k�, ↔ ,q��/P�� ↔ � , �13�

where P��↔ �= P�↔ �+ pP�→ � and P�↔ �=L↔ /L. The L↔

is the number of bidirectional edges before the transforma-
tion process.

In the literature on complex networks �4�, it is usual to use
statistics of average degree of neighbors of a given vertex to
represent the correlations of degrees in the network. Such a
measure is usually represented with figures of the average
neighboring degree dependence on the degree of the moni-
tored vertex. It is easy to verify if the network is correlated
or not by simple inspection of such a figure. In order to
analytically describe degree-degree correlations resulting
from this process, we will use a different measure much
more common in usual statistical analysis. The observed and
calculated correlations are just the noncentralized product
moments of independent variables. In the following, we will
loosely use the term correlations for all of the calculated
statistical quantities both for statistics obtained on one vertex
via Eq. �11� or for statistics of degrees on connected pairs of
vertices calculated via Eqs. �4� and �7�.

The equation for calculation of one-vertex statistics is


ki�ko�� = �
k�

ki�ko�P��k�� , �14�

for the case of in-out degree correlations. All other one-
vertex degree correlations are calculated in a similar way.
There are two different equations with which we calculate
two-vertex degree correlations. The first one is for the calcu-
lation of two-vertex degree correlations connected via unidi-
rectional edges. This type of correlations is designated as

 · �→ � in order to distinguish them from the two-vertex de-
gree correlations calculated via bidirectional edges 
 · �↔ �.
The equation for the in-out degree correlations of the vertices
connected via unidirectional edge is


ki�qo�� → � = �
k�q�

ki�qo�P��k�,q��→� . �15�

Using Eqs. �4� and �12�, we can calculate degree correlations
of unidirectionally connected pairs of vertices. The calcula-
tion of degree correlations of bidirectionally connected pairs
of vertices is a bit trickier. The approximate equation for
in-out degree correlations in this case is

2
ki�qo�� ↔ � � �
k�q�

ki�qo�P��k�,q��↔� . �16�

This equation is just an approximation because in order to
semianalytically calculate expected correlations after the
transformation process, we have to sum over all degrees k�
and q�, thus, including every bidirectionally connected pair
two times, except for the pairs which have exactly the same
degrees. The equation could be improved by taking into ac-
count a new class of correlations just between the bidirec-
tionally connected pairs of vertices, which have the same
degrees; but as it will be shown later, this approximation is
more than good enough for estimating expected correlations
for most of large enough networks. Using Eqs. �7� and �13�,
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it is possible to calculate degree correlations of bidirection-
ally connected pairs of vertices.

If the calculated correlations are less or greater than the
expected in the random network of the same degree distribu-
tion �configuration model� �15,16� then the network exhibits
a structural tendency that the vertices of larger degrees are
mutually connected less or more frequently. For example, the
expected in-out degree correlations of unidirectionally con-
nected pairs of vertices are


ki�qo�� → �Rand = �
k�q�

ki�qo�P��k��→�P��q��→� . �17�

In Eq. �17�, we use the conditional probabilities that the two
neighboring vertices are connected via unidirectional edge.
The P��k� �→� designates that the vertex of degrees k� is the
starting vertex of the conditioned edge, while P��q� �→� des-
ignates that the vertex with degrees q� is the end vertex of
that edge. In the case of vertex statistics, it can be written as

P��k��→� =
ko


ko�
P��k�� �18�

because of the fact that the vertex certainly has an outgoing
edge, which connects it to a neighboring vertex.

It is important to understand the fine difference between
the correlations between degrees of neighboring vertices and
correlations of degrees of one vertex. In the following, the
correlations of degrees of neighboring vertices will be des-
ignated with the conditional type of edge to make the dis-
tinction from one-vertex correlations.

For example, the in-in-degree correlations of neighboring
vertices can be calculated using the expression


ki�qi�� → � = �
k�q�

ki�qi�P��k�,q��→� , �19�

and using Eq. �4� and �12� the final solution is


ki�qi�� → � = �1 − p�2
kiqi� → � + p�1 − p�
ki� → � . �20�

The other examples are in-in-degree correlations of bidirec-
tionally connected vertices calculated with the presented
scheme,


ki�qi�� ↔ � =
�1 − p�2
kiqi� ↔ �P� ↔ �

P� ↔ � + pP� → �

+
�1 − p�2pP� → ��
kiqi� → � − 
ki� → ��

P� ↔ � + pP� → �
.

�21�

In this case, the factors P�→ � and P�↔ � are also present
because they did not cancel out as they did in Eq. �20�.

To compute Eq. �19� and other possible correlations, the
following set of relations is useful:

�
l=0

n �n

l
	l2�1 − p

p
	l

=
n�1 − p�

pn ��1 − p�n + p� ,

�
l=0

n �n

l
	l�1 − p

p
	l

=
n�1 − p�

pn ,

�
l=0

n �n

l
	�1 − p

p
	l

=
1

pn ,

�
l=1

n �n − 1

l − 1
	l

�1 − p�l−1

pl =
n�1 − p� + p

pn ,

�
l=1

n �n − 1

l − 1
	 �1 − p�l−1

pl =
1

pn . �22�

All the correlations are calculated semianalytically and
checked with numerical simulations on networks of different
sizes, density of edges, and starting correlation structure. In
Fig. 1, we present some one-vertex, two-vertex unidirec-
tional, and two-vertex bidirectional correlations calculated
semianalytically and compared to simulations. The computa-
tion of all elementary correlations can be more elegantly de-
scribed with matrices of transformation T. If the observed
correlations are represented as components of a “correlation
vector,” the studied process can be described with two dif-
ferent transformation matrices—one which transforms vector
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FIG. 1. �Color online� In this figure, we present an excellent
agreement between simulations of transformation process and our
semianalytical treatment. On x coordinate is parameter p, which
represents the probability of edge transformation. The y-coordinate
represents the ratio of the numerical value of the given correlations
and the maximum value of that correlation, in such a way that we
can present the correlations with very different magnitudes in the
same figure. With E� · � are designated expectations calculated from
equations similar to Eqs. �20� and �21�, as an input we used the
measured correlations in the network before the start of the process.
Simulations are designated with 
 · �. The initial networks we used
for this figure are a Barabási-Albert directed network of 105 vertices
for the case of one-vertex degree correlations and for the correla-
tions of unidirectionally connected vertices and a Spanish Wikipe-
dia for the case of the degree correlations of bidirectionally con-
nected vertices. The simulations are averaged over 1000 realizations
of the process in the case of a directed BA networks and over 100
realizations in the case of the Spanish Wikipedia. It can be seen that
the expected values of degree correlations between the bidirection-
ally connected vertices deviate a bit from simulational results,
which is probably a consequence of approximation �16�.
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of one-vertex correlations T1v and the second which trans-
forms the vectors of the neighboring pairs correlations T2v.

III. TRANSFORMATION MATRIX

Two transformation matrices differ one from another. The
matrix of one-vertex correlations is the square matrix of rank
8. The complete one-vertex statistics of interest can be
written as a vector S with components ST= 
ki�
= 
ko� , 
kr� , 
ki

2� , 
ko
2� , 
kr

2� , 
kiko� , 
kikr� , 
kokr��. The expected

correlations calculated after the transformation process for
one-vertex correlations can now be written as a simple linear
equation,


S��p�� = T1v�p�S�0� , �23�

where S��p� represents the vector of correlations after frac-
tion p of unidirectional edges is transformed into bidirec-
tional edges. Average in degree is always equal to the aver-
age out degree and is therefore eliminated from the matrix.
The transformation matrix for one-vertex correlations T1v is

T1v =�
�1 − p� 0 0 0 0 0 0 0

2p 1 0 0 0 0 0 0

p�1 − p� 0 �1 − p�2 0 0 0 0 0

p�1 − p� 0 0 �1 − p�2 0 0 0 0

2p�1 − p� 0 p2 p2 1 2p2 2p 2p

0 0 0 0 0 �1 − p�2 0 0

− p�1 − p� 0 p�1 − p� 0 0 p�1 − p� �1 − p� 0

− p�1 − p� 0 0 p�1 − p� 0 p�1 − p� 0 �1 − p�

� . �24�

This matrix also has its inverse,

T1v
−1 =

⎝
⎜
⎜
⎜
⎛

1

1 − p
0 0 0 0 0 0 0

2p

p − 1
1 0 0 0 0 0 0

−
p

�1 − p�2 0
1

�1 − p�2 0 0 0 0 0

−
p

�1 − p�2 0 0
1

�1 − p�2 0 0 0 0

−
2p

�1 − p�2 0
p2

�1 − p�2

p2

�1 − p�2 1
2p2

�1 − p�2

2p

�1 − p�
2p

�1 − p�

0 0 0 0 0
1

�1 − p�2 0 0

p

�1 − p�2 0 −
p

�1 − p�2 0 0 −
p

�1 − p�2

1

�1 − p�
0

p

�1 − p�2 0 0 −
p

�1 − p�2 0 −
p

�1 − p�2 0
1

�1 − p�
⎠
⎟
⎟
⎟
⎞

. �25�

The inverse matrix can be of interest for the statistical analy-
sis of real networks. If there is a reason to believe that the
bidirectional edges are completely random consequence of
the mentioned transformation process and if one has a net-
work model, which does not take into account the bidirec-
tional edges, it can be tested using the inverse transformation
matrix. It is easy to calculate the parameter p as p= L↔

L ,
where L↔ represents the number of bidirectional edges in the

network of interest, while L is the total number of edges.
Then using equation


S�0�� = T1v
−1�p�S��p� , �26�

one can find the vector of expected degree correlations be-
fore the transformation process. Comparing then 
S�0�� with
the vector of correlations obtained by the model, one can
gain additional information on the structural role of bidirec-
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tional edges and/or quality of the studied model. Such as-
sumptions could be a good null model for a number of real
world applications such as the analysis of communication or
traffic networks. In the companion paper �17�, we will
present an application of this framework to the Wikipedia
networks as a case study.

The transformation of two-vertex correlations is given by
the expression


S2v� �p�� = T2v�p�S2v�0� + b�p� , �27�

where S2v presents vector of two-vertex product moments
and b�p� additional vector containing terms such as p2 given
in Eq. �28�. The matrix of two-vertex degree correlations is
too big to be presented. For example, the equation for the
expected correlation of two bidirectional degrees of nodes
connected via unidirectional edge is


kr�qr�� → � = 
kr,qr� → � − p�
qr� → � + 
kr� → ��

+ p�
kiqr� → � + 
koqr� → � + 
krqo� → �

+ 
krqi� → �� + p2�
kiqi� → � + 
kiqo� → �

+ 
koqi� → � + 
koqo� → � − 
ki� → � − 
ko� → �

− 
qo� → � − 
qi� → � + 1� . �28�

Nevertheless, there is enough information for interested
reader to be able to reconstruct the two-vertex transformation
matrix completely.

It is important to note that correlations 
ki � → � and 
ko �
→ � of the exit vertex are very different from the correlations
obtained with one-vertex statistics. It can be written using
usual one-vertex statistics as 
ki � → �=


kiko�

ko� , while 
ko � → �

=

ko

2�

ko� . Similarly, the correlations of in vertex written by

means of one-vertex statistics are 
qi � → �=

qi

2�

ko� , while 
qo �

→ �=

qiqo�

ko� .

It can be shown that the correlations arising from the
transformation process are different from those that we
would expect from the noncorrelated network. The compari-
son between real correlations in the network and the ones
expected from the configuration model is shown in Fig. 2.

Up to now, we have shown that degree correlations can be
strongly influenced by the addition of bidirectional edges. If
the initial network is already very correlated, the transforma-
tion process tends to amplify these correlations compared to
the configuration model. An example of such strongly corre-
lated networks is the Barabási-Albert �BA� directed network
that we used for comparison �18�. In this model, new vertices
are attached to the old ones proportionally to the sum of in
degree of the old vertices and some parameter a. In our case,
the parameter a=1 was chosen in the simulations and the
starting network for BA evolution was Gilbert network of
103 vertices connected with probability 0.01. Other values of
parameter a were tested as well. It is known that the proper-
ties of the directed BA network do not depend on size or
degree sequence of initial network in the thermodynamical
limit. The final size of the simulated networks was 106.

A very important assumption of this analysis is that the
initial network does not mutate/evolve in any other way dur-
ing the transformation process. However, the reality is that
many complex networks evolve during the course of time
and are highly nonequilibrium systems �4�. There is a myriad
of different rules one can think of in order to simulate some
aspect of network growth and to study the influence of the
addition of the bidirectional edges in all these cases is im-
possible. We decided to study how the addition of reciprocal
edges changes some very well-studied growth process. An
obvious candidate for the study was the preferential attach-
ment growth with the addition of reciprocal edges during the
evolution process.

IV. GROWTH MODEL

In this model, the crucial idea is that at the formation of
directed edge between new and old vertices there is a transfer
of information about that event from the pointing vertex to
the pointed vertex. In that case, the old vertex can return the
newly formed edge to the new vertex, thus, forming a bidi-
rectional edge. In the model, this process of information re-
turn will be modeled by the probability r that the old vertex
points back to the new vertex.

The model can be described as a variant of the directed
network growth by means of preferential attachment and for-
mation of reciprocal edges. More precisely, in every time
step t there are t vertices labeled from 0, . . . , t−1 present in
the network and a new vertex labeled with t attaches to the
network with m outgoing edges. Each of those m edges is
attached to some already present vertex s with probability
proportional to the in degree of the old vertex, i.e., P�t
→s��

ki�s�

ki�t

. If the network is grown only using this rule, the
model is a variant of the BA model for the growth of directed
network with the attractiveness parameter A=0. The addi-
tional rule is that each of m new edges, with probability r,
can receive a reciprocal edge from the old vertex. With this
additional rule, the model is completely described. It is use-
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FIG. 2. �Color online� The correlations 
kr�qo� � → � resulting from
the transformation process compared with the expected correlations

of configuration model 
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ko�2 . In this case, the
transformation process clearly amplifies observed degree
correlations.
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ful to note that based on previous work �19,20�, one can
expect that for the value of parameter r�0 the network will
have an in-degree distribution with exponent ��−2 and, for
value of parameter r=1, the network will have an in-degree
distribution with exponent �=−3.

Although we will later calculate the analytical expression
for the joint degree probability distribution for general pa-
rameter m, we will first present the solution for m=1 because
it is easier to write it in a closed form. We will use the master
equation to calculate joint degree probability distribution.
Let p�ki ,ko ,s , t� present the probability that the vertex intro-
duced to the network at the moment s, at time t possesses in
degree ki and out degree ko. In this treatment, for simplicity
we will not use bidirectional degree because it would unnec-
essarily complicate the calculation. As the initial condition at
time t=1, we choose the network of two reciprocally con-
nected vertices s=0 i s=1,

p�ki,ko,0,1� = �ki,1
�ko,1,

p�ki,ko,1,1� = �ki,1
�ko,1. �29�

The probability p�ki ,ko ,s , t� for ko�1, ki�0, and s	 t is

p�ki,ko,s,t� =
ki − 1

Lin�t�
�1 − r�p�ki − 1,ko,s,t − 1�

+
ki − 1

Lin�t�
rp�ki − 1,ko − 1,s,t − 1�

+ �1 −
ki

Lin�t�
	p�ki,ko,s,t − 1� . �30�

The function Lin�t� is a random variable, which is equal to
the sum of all degrees present in the network at time t,

Lin�t� = �
s=0

t−1

ki�s� = �
ki

ki�
s,ko

p�ki,ko,s,t − 1� . �31�

The following approximation for the Lin�t� is very reasonable
for a very big network,

Lin�t� � 
Lin�t�� = �1 + r�t , �32�

i.e., we assume that the random variable Lin�t� is well de-
scribed by its expected value.

The equation for the vertex t, which is just attaching to the
network at the time t is

p�ki,ko,t,t� = r�ki,1
�ko,1 + �1 − r��ki,0

�ko,1. �33�

Probability that the vertex s does not have any ingoing edge
is

p�0,ko,s,t� = �1 − r��ko,1. �34�

We sum the obtained joint probabilities p�ki ,ko ,s , t�
that the vertex s at time t have degrees ki and ko, over all
present vertices s to get the probability P�ki ,ko , t�, that the
randomly chosen vertex at time t has degrees ki and
ko, i.e., P�ki ,ko , t�=�s=0

t p�ki ,ko ,s , t� / �t+1�. We also assume

that the distribution will be stable for large t, i.e.,

P�ki ,ko , t� →
t→�

P�ki ,ko�. The described procedure results with
the equations

P�0,ko� = �1 − r��ko,1, �35�

P�ki � 1,1� =
r�1 + r��ki,1

+ �ki − 1��1 − r�P�ki − 1,1�

1 + r + ki
,

�36�

and

P�ki � 1,ko � 1� =
ki − 1

1 + r + ki
��1 − r�P�ki − 1,ko�

+ rP�ki − 1,ko − 1�� . �37�

Equation �36� shows that P�1,1�=r�1+r� / �2+r�. The
simplest way to solve this set of equations is to sum contri-
butions of all possible paths for probability distribution
P�ki ,ko�. Equations �36� and �37� can be easily represented
as the walk on the event lattice shown in Fig. 3. The nodes of
this lattice represent all the possible events �degree combina-
tions� of randomly choosing a vertex from the ensemble of
networks generated by the studied process. Every movement
to the right from the site ki−1,ko� to the site ki ,ko� is mul-
tiplying the probability distribution attached to the site with
the factor w+,0= �ki−1��1−r� / �1+r+ki�, while every diago-
nal movement from the site ki−1,ko−1� to the site ki ,ko�
represents multiplying the probability distribution with the
factor w+,+= �ki−1�r / �1+r+ki�. The value of the joint degree
probability distribution P�ki ,ko� is therefore equal to the sum
of the contributions of all possible paths from site 1,1� to the
site ki ,ko�. Every path has ki−ko movements to the right and
ko−1 diagonal movements and every one of them has the
same contribution

w
+,+

+,0

w

1 2 3 4 5 6 7 ki 8

1

2

3

4

5
ko

6

FIG. 3. �Color online� The event-set lattice used to calculate the
stable distribution. The borders of the lattice segment in which
paths contribute to the probability are designated with cyan color.
Dashed red designates one of the possible paths and arrows repre-
sent the possible directions of paths.
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rko−1�1 − r�ki−koP�1,1��
n=2

ki n − 1

1 + r + n
. �38�

The number of distinct paths is �
ki−1
ko−1 �, which is equal to the

number of combinations of factors w+,0 and w+,+. The general
expression for the joint degree distribution is therefore equal
to

P�ki,ko� = 
�ki − ko��ki − 1

ko − 1
	rko−1�1 − r�ki−ko

�
r�1 + r�

2 + r

�ki − 1�!
�r + 3�ki−1

, �39�

where denominator in the last factor �r+3�ki−1 represents
the Pochammer symbol, defined with relation �x�n
=x�x+1� . . . �x+n−1�. The nice property of this solution is
that the correlations between degrees of one vertex are ex-
actly computed and easily checked. In the limit of the big in
degree, using the representation of the Pochammer symbol
by means of Gamma functions �x�n= ��x+n�

��x� , it is easy to show
that the asymptotic behavior of the last factor is
limki→�

�ki−1�!
�r+3�ki−1

=��r+3�ki
−�2+r�. By simple summation over

the possible values of ko, we can see that the marginal dis-
tribution P�ki� also has a power-law behavior with the same
exponent.

To check analytical solutions, we have performed a series
of simulations for different values of parameter r and differ-
ent network sizes. For all monitored parameters and sizes of
network, we found a nice agreement between analytical so-
lution and simulations �Fig. 4�.

V. GROWTH MODEL FOR A GENERAL PARAMETER m

It is possible to calculate the joint degree distribution of
the model for the general parameter m. We again use the
master equation,

p�ki,ko,s,t� = �
l=0

m �m

l
	� ki − l

Lin�t�
	l�1 −

ki − l

Lin�t�
	m−l


�ki − l�

��
n=0

l � l

n
	rn�1 − r�l−n

�p�ki − l,ko − n,s,t − 1�
�ko − m − n� , �40�

where 
�x� represents usual Heaviside Theta function with
convention 
�0�=1. Indices m, l, and n combine all the pos-
sible combinations of the number of outgoing edges formed
on the new vertex, the number of new edges attached to the
old vertex, and the number of formed reciprocal edges from
which it is possible to create vertex with given degrees. To
ease the calculation, we allowed the formation of multiple
edges between two vertices, which in the thermodynamical
limit does not influence the exact solution. The boundary
condition of this set of equations is

p�ki,ko,t,t� = �
n=0

m �m

n
	rn�1 − r�m−n�ki,n

�ko,m. �41�

We again sum over all vertices and approximate the function
Lin�t� with its expected value Lin�t��
Lin�t��= �1+r�mt. Us-
ing Eq. �41� and assuming a stable degree distribution in the
thermodynamical limit, the following equation for the joint
degrees distribution is obtained:

1 + r + ki

1 + r
P�ki,ko�

= �
n=0

m �m

n
	rn�1 − r�m−n�ki,n

�ko,m

+
ki − 1

1 + r

�ki − 1�
�ko − m − 1�rP�ki − 1,ko − 1�

+
ki − 1

1 + r

�ki − 1�
�ko − m��1 − r�P�ki − 1,ko� .

�42�

This equation can be solved in a manner similar to Eqs.
�35�–�37�. In Fig. 5 we present the event-set lattice with the
contributions of the paths to the joint probability attached to
every site. The contribution of every path is again identical
for every lattice bond as soon as the path detaches from the
line ko=m. The total contribution of the paths differs only in
the number of steps made on line ko=m for the 1	ki�m.
For 1	ki�m and ko=m, the joint degree probability is

P�ki,m� =
1 + r

1 + r + ki
�
l=1

ki−1

al�1 − r�ki−l�
j=l

ki−1
j

1 + r + j

+
1 + r

1 + r + ki
aki

, �43�

and al represents the probability of binomial distribution al

= � m
l �rl�1−r�m−l. The equation for the case ki�m and ko=m

is
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FIG. 4. �Color online� In this figure, it can be seen that the
agreement between distributions of in degrees of the process simu-
lated over 100 different realizations �markers� and the analytical
solution �full line�. The parameter r has the value of 0.2.
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P�ki,m� = �1 − r�ki−mP�m,m� �
j=m+1

ki j − 1

1 + r + j
. �44�

The contribution of paths which separated from the line ko
=mi1	ki�m at the site �ki=ki� ,ko=m� is

P�ki,ko��ki�,m�

= P�ki�,m��ki + ko − m − ki� − 2

ki − ki� − 1
	

��1 − r�ko−mrki−ki�−ko+m �ki − 1�!
�ki� − 1�!

�r + 3�ki�−1

�r + 3�ki−1
, �45�

where �ki� ,m� represents the sum over the possible paths
after detachment from the line ko=m. The whole solution is
now easy to write using Eqs. �43�–�45�, but it is complicated
and not very informative. Nevertheless, it is interesting to
monitor the behavior of Eq. �43�. It can be verified that for
P�ki	m ,ko�, the joint degree distribution can increase de-
pending on the initial parameters of the model. On the other
hand, in the limit ki�m we expect the fall of the joint prob-
ability distribution. This implies that for certain range of pa-
rameters, the distribution has a nontrivial mode. Such a be-
havior can be easily checked if Eq. �42� is summed over all
out degrees ko� �m ,�� to obtain the marginal distribution of
in degree. In the range ki� �1,m�, the solution is

P�ki� =
1 + r

1 + r + ki
�aki

+ �
l=1

ki−1

al
�ki − 1�!
�l − 1�! �

j=l

ki−1
1

1 + r + j
	 .

�46�

The marginal in-degree distribution obtained analytically co-
incides with the simulations rather well as shown on Fig. 6.
The modal character of the in-degree distribution is easily
observed in this equation. The dependence of mode on the

parameters r and m is shown in Figs. 7 and 8.
The other important property of the distribution is its

power-law behavior in the tail. As can be seen in Fig. 8, the
exponent of the tail does not depend on the parameter m.
Power-law behavior of the tail is governed only by the pa-
rameter r as shown in Fig. 7. Indeed in the continuum ap-
proximation, valid for ki�1, the equation for the in-degree
marginal distribution is

�1 + r�P�ki� � −
d�kiP�ki��

dki
. �47�

The solution of this equation is

P�ki� � ki
−�2+r�, �48�

and the dependence of the value of the power-law exponent
with respect to parameter r is very clear. The equation for the
power-law exponent �=−2−r also confirms our claim that

w+,0

w+,+

1 2 3 4 5 6 7 ki 8

ko

9

4

5

6

7

8

a a1 a2 a43

FIG. 5. �Color online� The lattice used to calculate the stable
distribution of the model for the parameter m=4. Cyan color des-
ignates the borders of the lattice area within which the paths con-
tribute to the joint probability P�ki=7,ko=8�, while the dashed red
path represents one of the possible contributing paths. Arrows rep-
resent the allowed directions of movement on the lattice, while the
loops on the sites represent the additional coefficients al contribut-
ing to the joint degree probability on these sites.
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the model behavior interpolates between usual BA model
with the exponent −3 and the directed BA model with the
exponent close to −2. While agreement between our model
for r=1 and the usual BA model for the undirected networks
is trivial, the relation with the directed version of BA model
is a bit more complicated. As can be seen in asymptotic form
of our model for m=1, the marginal in-degree distribution
vanishes for r=0 just as in case of directed BA model �20�.
In their model, the asymptotic behavior is governed by the
relation P�ki��ki

−�2+a�, where a is a fraction of attractiveness
A and m number of outgoing edges. For very small a,
P�ki��ki

−2, as is the case in our model, if we let r to be very
small. Therefore, the asymptotic behaviors of both models
are very similar in the case of a�r�0. In the case a=r=0,
resulting marginal in-degree distribution changes dramati-
cally in both models. In this case, the resulting network is
similar to star with the center of the star equivalent to the
size of initial core.

It is important to mention that this analytical discussion is
valid up to a certain point also for a little bit broader class of
growth models. In the analytic treatment, the distribution of
the outgoing edges of the new vertex t �Eq. �41�� at the time
t is a delta function. We can expect that this reasoning can be
applied for a more general class of distributions for the out-
going edges of the vertex t at time t with the assumption that
the mean-field approximation is valid. In particular, we ex-
pect that this consideration will be valid for all unimodal
discrete distributions with fast decaying tails. To test this
assumption, we examined cases in which the out degree of
the vertex t at time t is drawn from the binomial and Poisson
distributions.

The Poisson distribution

P�ko�m� =
mkoe−m

ko!
�49�

is determined only by parameter m. For every monitored m
of the original model, we made a new set of simulations with

Poisson distribution with the same m. For binomial distribu-
tion,

P�ko�m,Z� = � Z

ko
	�m

Z
	ko�1 −

m

Z
	Z−ko

, �50�

the case is a little bit more complicated because it is defined
with two parameters: m the expected number of outgoing
edges and Z maximal allowed out degree of the vertex t at
time t. For a broad choice of values of parameter Z, the
results were very similar to the ones expected from the origi-
nal model as N�Z, as can be seen in Fig. 9.

VI. CONCLUSION

We have shown that reciprocal edges can significantly
influence the degree correlations in complex networks. In the
first part of the paper, we laid down a way to investigate the
influence of randomly distributed bidirectional edges on the
overall degree correlations and have shown how this hypoth-
esis can be tested in the case of real networks. We also stud-
ied a simple model of the network growth, which conserves
an expected fraction of reciprocal edges.

The analysis laid out in the first part of this paper focuses
on the degree correlations represented as average product
moments. This analysis has its positive and negative side.
The average product moments clearly do not contain as
much information as the average neighbor degree functions
�4� and this is an obvious shortcoming of such a measure. On
the other hand, it is exactly the reason why product moments
can be very useful for case studies. In the case of very cor-
related networks, sometimes the frequency of degree statis-
tics for the large degrees is so scarce that it effectively
shrinks the available configuration space for the null models,
which are trying to preserve correlations found in the net-
work. This reduction in the available configuration space can
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FIG. 8. �Color online� The marginal distribution of the in degree
calculated from the theory for r=0.4 and different values of param-
eter m. The existence and the position of the mode strongly depend
on the value of parameter m. The tail of distribution is independent
of the parameter m and the power-law character of the tail is easily
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10
0

10
2

10
4

10
610

−8

10
−6

10
−4

10
−2

10
0

k
i

P
cu

m
(k

i)

δ − distribution
Binomial distribution
Poisson distribution

FIG. 9. �Color online� In this figure, we present cumulative
in-degree distributions for the different choices of the initial out-
degree distribution of the vertex introduce at time t. The simulations
are presented for the parameters m=10, r=0.2, N=106, and 100
realizations. It is clear that different choices of out-degree distribu-
tions for the new vertices do not change the general behavior of the
in-degree distribution. The broader distributions of initial out degree
result with a lower maximal degree, which we explain by a stronger
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sometimes be so huge that for connected pairs of vertices
with large degrees any result different from the already ob-
served in the network is almost impossible to realize. In this
case, the product moments incorporate in themselves much
larger number of viable network realizations so that the
analysis of network with correlated null models is much bet-
ter founded.

In the companion paper �17�, we apply the theory pre-
sented in this paper to show that Wikipedia networks cannot
be explained by the random distribution of bidirectional
edges on the static network. In the same paper, we used the
presented growth model to explain the in-degree distribution
of the Wikipedia networks with very good results.

From the theoretical point of view, this model helps to
understand possible mechanisms, which create modes in the
degree distributions of different scale-free-directed networks.
Furthermore, this model is a good candidate to explain other

empirical directed networks, which combine power-law tails
and nontrivial mode of the degree distribution, and the future
work in this direction is clearly needed. It also represents one
of the simplest growth models, which preserves some type of
local correlations. It is our opinion that the understanding of
interrelations between different types of correlations in com-
plex networks heavily depends on such growth models. The
validation of this claim is an important task for our future
research.
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